N

新闻中心

EWS
C

联系方式

ONTACTS

产品新闻COMPANY NEWS

首页>新闻中心>产品新闻

解读工业市场与工业物联网

作者:信立科技时间:2019-02-19来源:深圳市信立科技有限公司点击数:174

一边是冰冷入骨的工业自动化市场,一边是仍在增长的数据采集场景,为什么会形成两极分化的局面?这些市场信号应该如何解读?


 

1. 从工业自动化到工业物联网

 
工业自动化产品一般被用于两个部分,一部分面向设备制造商,作为组件构成整体设备对外销售。另一部分面向工厂管理部门,作为生产线的一部分,起到提质增效的作用。
 
这两部分对应推进企业发展的两种驱动力,一种是来自于市场增长性的外部拉力,另一种是来自于企业整体效益提升的内在动力。
 
随着市场环境的变化,整体设备的销量收缩,第一部分的出货量下滑,而第二部分的投入正在发生转型。当经济周期进入新阶段,很多市场的增长红利一望见底,制造企业开始关注可持续的竞争力,开始分析自身的运营效率。如果钱投下去,不能及时有效地转变为新的制造订单,这样的粗放型投入普遍被搁置。
 
最明显的表现是,第二部分的投入,正在从传统工控,转变为工业物联网。产线扩容的需求变成了升级改造的需求、设备换新的需求变成了性能提升的需求…对于传感产品的部署需求被释放,用于提升企业内部生产的能见度。通过传感数据的分析,企业可以更好的了解并改善自己的生产效益,延长设备的生命周期。
 

越来越多的工业数据变得在线了,这本身堪称一次质变。


 

2. 从机器换人到机器助人
 
潮水退去,越来越多的企业仔细审视着自己的“内功”,审视着自己的供应链管理和生产效率。无论是产品降价的空间、市场份额争夺的空间、生产效率提升的空间,都开始被仔细测算。这时,帮助企业获得效益提升的解决方案备受青睐。
 
以工厂内部的物流与仓储环节为例。工业机器人、AGV、自动货架等高大上的最新产品虽然技术领先性不言而喻,但相比“一次到位”,制造企业更加重视如何逐步的改进现状。
 
如果说过去制造企业还“好高骛远”地思考如何机器换人,现在就“真切务实”地转而思考如何让机器更好的与人配合。在不增加太多成本的同时,较短时间内就能提升效率。关键是要见效快。
 
举个例子,工厂内部的物流管理水平还普遍较低,80-90%的工作仍然由人工操作,短时间内改变这种现状,做到“无人化”并不现实。通过部署不同类型传感器,少量网关等硬件,以及为工作人员装备可穿戴设备,就可以完成仓储效率的提升。
 
市场上现有的工业物联网解决方案,部署时间仅需要1个月,投资回收周期在1年左右。因为对原有流程变化较小,降低了对人员操作及培训的要求,人力成本可降低30%~50%。
 

越来越多的企业从小处着眼,让知识在人机之间共享,让效益在双方交互中提升。


 
3. 工业数据的颗粒度在变细
 
过去制造企业只需要管好“进销存”,但现在要管好更深的“底盘”才行。
 
做个比喻,过去的生产线像自助餐厅,每个机器都在做菜,产品源源不断产生,顾客也就络绎不绝。到底哪个厨师做的菜好吃,哪个设备的生产效率最高,并不需要精细颗粒度的数据分析。反正自助餐厅的整体销路好,菜是否好吃,生产效率是高是低,都能分到一杯羹。
 
数据颗粒度太粗,导致餐厅既不知道顾客是被哪盘菜所吸引,也不会因为某盘菜卖得好,给厨师发奖金。自助餐厅的厨师也就没什么厨艺精进的意愿,毕竟做好做差一个样。菜色日趋平庸是必然。
 
但现在,顾客口味变高了,个性化更强了,自助餐厅的模式很难生存。这时就要分析每个厨师的表现、每盘菜品的受欢迎程度、甚至每个人厨艺中的优缺点。
 
具体到制造业,就变成需要追踪每一批次的产品,甚至追踪到每一件独立的产品,比如生产出的一瓶水、一包烟、一根笔…这样的颗粒度。还得了解每条产线,每个工段,甚至每台设备在各种工况下的具体情况。
 
与数据颗粒度变细这一趋势高度相关的,又是工业物联网系统。
 
首先是设备联网,通过数据采集的精细化和全面性,覆盖工业过程中的各类变化条件,保证提取出反映对象真实状态的全面性信息。
 
当然仅仅做到数据联网还不够,需要进一步掌握数据背后的物理意义,以及特征之间关联性的机理逻辑,将数据分析与决策、管理、激励挂钩。